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Slip And Hall Effects On The Flow Of A Hyperbolic Tangent Fluid Through Porous 
Medium In A Planar Channel With Peristalsis 

 
Abstract— In this paper, the effect of Slip and Hall effects on 
the flow of Hyperbolic tangent fluid through a porous 
medium in a planar channel with peristalsis under the 
assumption of long wavelength is investigated. A Closed 
form solutions are obtained for axial velocity and pressure 
gradient by employing perturbation technique. The effects of 
various emerging parameters on the pressure gradient, time 
averaged volume flow rate and frictional force are discussed 
with the aid of graphs. 

Keywords: Hall, Hyperbolic tangent fluid, Hartmann number, 
long wavelength, peristaltic pumping, Darcy number, porous 
medium, slip condition, Reynolds number, Weissenberg 
number, power-law index, pressure gradient, perturbation. 

I. INTRODUCTION 

Extensive study of peristalsis has been 

carried out for a Newtonian with a periodic train of 

sinusoidal peristaltic waves. The inertia – free      

peristaltic transport with long wavelength analysis 

was given by Shapiro et al. (1969). The early 

developments on the mathematical modeling and 

experimental fluid mechanics of peristaltic flow 

were given in a comprehensive review by Jaffrin and 

Shapiro (1971). However, the rheological properties 

of the fluids can affect these characteristics 

significantly. Moreover, most of the physiological 

fluids are known to be non-Newtonian.  It is well 

known that some fluids which are encountered in 

chemical applications do not adhere to the classical 

Newtonian viscosity prescription and are 

accordingly known as non-Newtonian fluids. One 

especial class of fluids which are of considerable 

practical importance is  that in which the viscosity 

depends on the shear stress or on the flow rate. The 

viscosity of most non-Newtonian fluids, such as 

polymers, is usually a nonlinear decreasing function 

of the generalized shear rate. This is known as shear-

thinning behavior. Such fluid is a hyperbolic tangent 

fluid (Ai and Vafai, 2005). Nadeem and Akram 

(2009) have first investigated the peristaltic flow of 

a hyperbolic tangent fluid in an asymmetric channel. 

Nadeem and Akbar (2011) have analyzed the 

peristaltic transport of a Tangent hyperbolic fluid in 

an endoscope numerically.  Akbar et al. (2012) have 

discussed the peristaltic flow of a hyperbolic tangent 

fluid in an inclined asymmetric channel with slip 

and heat transfer.  

Based on Experimental controls, it was 

shown that the controlled application of low 

intensity and frequency pulsing magnetic fields  

could modify cell and tissue behavior. 

Biochemistry has taught us that cells are formed of 

positive or negative charged molecules. This is 

why these magnetic fields applied to living 

organisms may induce deep modifications in 

molecule orientation and in their interaction. An 

impulse magnetic field in the combined therapy of 

patients with stone fragments in the upper urinary 

tract was experimentally studied by Li et al.  

(1994). It was found that impulse magnetic field 

(IMF) activates impulse activity of ureteral smooth 

muscles in 100% of cases. Elshahed and Haroun 
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(2005) have investigated the peristaltic flow of a 

Johnson-Segalman fluid in a planar channel under 

the effect of a magnetic field. Hayat and Ali (2006) 

have investigated the peristaltic motion of a MHD 

third grade fluid in a tube. Hayat et al. (2007) have 

first investigated the Hall effects on the peristaltic 

flow of a Maxwell fluid trough a porous medium in 

channel. Magnetohydrodynamic peristaltic flow of 

a hyperbolic tangent fluid in a vertical asymmetric 

channel with heat transfer was studied by Nadeem 

and Akram (2011).  Prasanth Reddy and Subba 

Reddy (2012) have analyzed the peristaltic 

pumping of third grade fluid in an asymmetric 

channel under the effect of magnetic fluid. Effect 

of hall and ion slip on peristaltic blood flow of 

Eyring Powell fluid in a non-uniform porous 

channel was studied by Bhatti et al. (2016).   Subba 

Narasimhudu and Subba Reddy (2017) have 

studied the Hall effects on the peristaltic flow of a 

Hyperbolic tangent fluid in a channel.  Shalini and 

Rajasekhar (2019) have investigated the effect of 

hall on peristaltic flow of a Newtonian fluid 

through a porous medium in a two-dimensional 

channel. 

Moreover, flow through a porous medium 

has been studied by a number of researchers  

employing Darcy’s law Scheidegger (1974).  Some 

studies about this point have been given by 

Varshney (1979) and Raptis and Perdikis (1983).  

The first study of peristaltic flow through a porous 

medium is presented by Elsehawey et al. (1999). 

Elsehawey et al. (2000) investigated the peristaltic 

motion of a generalized Newtonian fluid through a 

porous medium. Hayat et al. (2007) have first 

investigated the Hall effects on the peristaltic flow 

of a Maxwell fluid trough a porous medium in 

channel. Peristaltic motion of a carreau fluid 

through a porous medium in a channel under the 

effect of a magnetic field was studied by Sudhakar 

Reddy et al. (2009). Subba Reddy and Prasnath 

Reddy (2010) have investigated the effect of 

variable viscosity on peristaltic flow of a Jeffrey 

fluid through a porous medium in a planar channel.  

Eldabe (2015) have studied the Hall Effect on 

peristaltic flow of third order fluid in a porous 

medium with heat and mass transfer.  

Motivated by these, the effect of slip and 

Hall on the peristaltic pumping of a hyperbolic 

tangent fluid in a planar channel under the 

assumption of long wavelength is investigated. The 

expressions for the velocity and axial pressure 

gradient are obtained by employing perturbation 

technique. The effects of Weissenberg number, 

power-law index, Darcy number, Hall parameter, 

Hartmann number and amplitude ratio on the axial 

pressure gradient, time-averaged volume flow rate 

and the friction force at the wall are analyzed with 

the help of graphs.  

II. MATHEMATICAL FORMULATION  

We consider the peristaltic motion of a hyperbolic 

tangent fluid through a porous medium in a two-

dimensional channel of width 2a  under the effect  

of magnetic field. The flow is generated by 

sinusoidal wave trains propagating with constant 

speed c  along the channel walls. A uniform 

magnetic field 0B  is applied in the transverse 
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direction to the flow. The magnetic Reynolds 

number is considered small and so induces  

magnetic field neglected. Fig. 1 represents the 

physical model of the channel.  

The wall deformation is given by              

2( , ) cos ( )Y H X t a b X ct


      ,              (2.1) 

where b is the amplitude of the wave,   - the wave 

length and X and Y - the rectangular co-ordinates  

with X measured along the axis of the channel and 

Y perpendicular to X . Let ( , )U V  be the velocity 

components in fixed frame of reference ( , )X Y . 

The flow is unsteady in the laboratory 

frame ( , )X Y . However, in a co-ordinate system 

moving with the propagation velocity c (wave 

frame (x, y)),  the boundary shape is stationary. The 

transformation from fixed frame to wave frame is  

given by 

 , , ,x X ct y Y u U c v V                    (2.2) 

where ( , )u v  and ( , )U V  are velocity components in 

the wave and laboratory frames respectively. 
 

 
 
                  

    The constitutive equation for a Hyperbolic 

Tangent fluid is  

    0 tanh n      
          (2.3) 

where   is the extra stress tensor,   is the infinite 

shear rate viscosity, o  is the zero shear rate 

viscosity,   is the time constant, n  is the power-

law index and   is defined as   

 1 1
2 2ij ji

i j

         (2.4) 

where   is the second invariant stress tensor. We 

consider in the constitutive equation (2.3) the case 

for which 0   and 1  , so the Eq. (2.3) can be 

written as 

 

      0 0 01 1 1 1n n n                           

   (2.5) 

 The above model reduces to Newtonian for 

0   and 0n  . 

 The equations governing the flow in the 

wave frame of reference are  

0u v
x y
  
 

               (2.6) 

 

  

 
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 



                 

 

 

                                                                           (2.7) 

 

  
2
0

2

0

1
xy yy Bv u pu v m u c v

x y y x y m

v
k

  



                  



 

            (2.8) 
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where  is the density, k  is the permeability of the 

porous medium,   is the electrical conductivity, 

0B  is the magnetic field strength and  m  is the Hall 

parameter.   

 The corresponding dimensional boundary 

conditions are 

xyu c    at y H    (slip condition)            (2.9) 

0u
y
 


 at 0y   (symmetry condition)  (2.10) 

here   is the slip parameter. 

Introducing the non-dimensional variables defined 

by  

2
0

0

,  , ,  ,  ,  

,

x y u v ax y u v
a c c

pa b
p

ac


  


 

    

 
 

0 0 0

,  ,  ,  ,  ,xx yyxx xy xy yy
H ct ah t
a c c c

      
   

    

 

0

Re ,  ,  ,ac c a qWe q
a c ac

 


   


    (2.11) 

into the Equations (2.6) - (2.8), reduce to (after 

dropping the bars) 

0u v
x y
  
 

     (2.12) 

    

2

2

2

Re

11 1
1

xyxxu u pu v
x y x x y

M m v u u
Dam


 



              

   


 (2.13) 

  

3 2

2 2

2

Re

1
1

xy yyv v pu v
x y y y y

M m u v v
Dam

 
  

 

               

  


 (2.14) 

where  2
kDa
a

  is the Darcy number,  

 2 1 1xx
un We
x

        


  21 1xy
u vn We
y x

  
             

  

 2 1 1yy
vn We
y

         


1
2 22 2

2 2 22 2u u v v
x y x y

   
                         

  and 

0
0

M aB 


  is the Hartmann number.  

Under lubrication approach, neglecting the 

terms of order   and Re, the Eqs. (2.13) and (2.14) 

become 

 
2

2

1 1

1 1
1

p u un We
x y y y

M u
Dam

                    
 

   

            (2.15)  

0p
y
 


               (2.16) 

From Eq. (2.15) and (2.16), we get  

 

 

22

2

2

2

1

1
1

1

dp u un nWe
dx y yy

M
u

Dam

              
 

   

           (2.17)  

The corresponding non-dimensional 

boundary conditions in the wave frame are given 

by  

1 1 1
u u

u n We
y y


   

         
  at  

1 cos2y h x       (2.18) 

0u
y
 


  at 0y    (2.19) 

The volume flow rate q  in a wave frame of 

reference is given by 
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0

h

q udy  .             (2.20) 

 The instantaneous flow ( , )Q X t  in the 

laboratory frame is 

 
0 0

( , ) ( 1)
h h

Q X t UdY u dy q h       (2.21) 

 The time averaged volume flow rate Q  

over one period T
c
   

 of the peristaltic wave is 

given by 

0

1 1
T

Q Qdt q
T

       (2.22) 

 
III. SOLUTION 

Since Eq. (2.17) is a non-linear differential 

equation, it is not possible to obtain closed form 

solution. Therefore we employ regular perturbation 

to find the solution. 

For perturbation solution, we expand , dpu
dx

 and q as 

follows  

  2
0 1u u Weu O We      (3.1) 

  20 1dp dpdp We O We
dx dx dx

     (3.2) 

  2
0 1q q We q O We                 (3.3) 

Substituting these equations into the Eqs. (2.17) - 

(2.19), we obtain 

3.1. System of order 0We  

   
2 2

0 0
02 2

11 1
1

dp u Mn u
dx Day m

 
       

             (3.4)  

and the respective boundary conditions are 

  0
0 1 1

u
u n

y



   


  at y h       (3.5) 

0 0
u
y





  at 0y                (3.6) 

3.2. System of order 1We  

 
22 2

1 1
12 2

11
1

oudp u Mn u
dx y y Day m

                    
  (3.7) 

and the respective boundary conditions are 

 
2

01
1 1 0

uu
u n n

y y
 

 
      

 at y h   (3.8) 

1 0
u
y





  at 0y                (3.9) 

3.3 Solution for system of order 0We  

Solving Eq. (3.4) using the boundary 

conditions (3.5) and (3.6), we obtain   

 
0

0 2

1 cosh 1 1
cosh (1 ) sinh1

dp yu
dx h n hn


  

 
      

      (3.10) 

where 
2

2

1 1
1 1

M
n Dam


 

    
  . 

The volume flow rate 0q  is given by 

 
 0

0 3

sinh cosh (1 )sinh1
cosh (1 )sinh1

h h h n hdp
q h

dx h n hn
    

  
   

     
      (3.11) 

From Eq. (3.11), we have 

 

     
 

3
00 1 cosh (1 )sinh
sinh cosh (1 ) sinh

q h n h n hdp
dx h h h n h

   
    

   


    
       (3.12)  

3.4 Solution for system of order 1We  

Substituting Eq. (3.10) in the Eq. (3.7) and 

solving the Eq. (3.7), using the boundary 

conditions (3.8) and (3.9), we obtain 

   

 

1
1 2

2
0

1

1 cosh 1
cosh (1 )sinh1

3

dp yu
dx h n hn

dp
n dx g y

c


  

 
      

 
 
 

  (3.13) 

Where     3

1 1 cosh (1 )sinhc n h n h          
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  

 
 

 
 

 

2

sinh 2 2sinh cosh

2sinh sinh2 cosh

2 cosh2 cosh cosh

1 sinh cosh
sinh 2sinh sinh2

h h y

y y h

g y h h y

n h y
h y y

  

  

  

  
  

   
  

   
 

   
  

    
     

. 

The volume flow rate 1q  is given by  

 
 

 
1

1 3

2
0

2

sinh cosh (1 )sinh1
cosh (1 )sinh1

h h h n hdp
q

dx h n hn

dpc
dx

    
  

   
      

 
  

      (3.14) 

where
   

3
2 3 34

4 3cosh 2sinh 2 sinh
cosh2 cosh

6 1 cosh (1 ) sinh

h h h
h h

c
c n

n h n h

  
 

   

        
  

 
  

   
 
 
  

  

and 

   
3 3

3sinh cosh 2 1
1

2sinh

h h
c n

h

 




  
     

.   

From Eq. (3.14) and (3.12), we have 

 

  
 

23
1 01

4

1 cosh (1 )sinh
sinh cosh (1 ) sinh
q N n h n h dpdp

c
dx dxh h h n h

  
    

             
      (3.15) 

where 

   
  

3
4 2 2

4 3cosh 2sinh2 sinh
cosh2 cosh

6 1 cosh (1 )sinh

sinh cosh (1 ) sinh

h h h
h h c

c n
n h n h

h h h n h

  
 

   

    

    
 

  
   

     

.  

Substituting Equations (3.12) and (3.15) 

into the Eq. (3.2) and using the 

relation 0 1dp dpdp We
dx dx dx

   and neglecting terms 

greater than  O We , we get  

     
 

 

3

2
4 5

1 cosh (1 ) sinh
sinh cosh (1 )sinh

q h n h n hdp
dx h h h n h

Wec q h c

   
    

   
 

    



       (3.16) 

Where 
 

2

3

5

cosh
1

(1 )sinh
cosh

sinh
(1 )sinh

h
n

n h
c

h
h h

n h




 


 
 

                  

  

The dimensionless pressure rise per one 

wavelength in the wave frame is defined as  

 
1

0

dpp dx
dx

       (3.17) 

 Note that, as Da   and 0   our results 

coincide with the results of Subba Narasimhudu 

and Subba reddy (2017). 
 

IV. DISCUSSIONS OF THE RESULTS 

 

Fig. 2 shows the variation of the axial 

pressure gradient dp
dx

 with We  for 0.5n  , 0.2m  , 

0.1  , 1M  , 0.1Da  , 0.6   and 1Q   . It is 

observed that, the axial pressure gradient dp
dx

 

increases with increasing Wiessenberg number We .  

The variation of the axial pressure gradient 

dp
dx

 with n  for 0.01We  , 0.2m  , 1M  , 0.1  , 

0.1Da  , 0.6   and 1Q    is depicted in Fig. 3. It 

is found that, the axial pressure gradient dp
dx

 

decreases with an increase in power-law index n .  

Fig. 4 illustrates the variation of the axial 

pressure gradient dp
dx

 with   for 0.5n  , 0.01We  , 

1M  , 0.2m  , 0.1Da  , 0.6  and 1Q   . It is 
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noted that, the axial pressure gradient dp
dx

 decreases  

with increasing slip parameter  .  

The variation of the axial pressure gradient 

dp
dx

 with Da  for 0.5n  , 0.01We  , 1M  , 0.1  , 

0.2m  , 0.6  and 1Q    shown in Fig. 5.  It is 

noted that, the axial pressure gradient dp
dx

 decreases  

with increasing Darcy number Da .  

Fig. 6 depicts the variation of the axial 

pressure gradient dp
dx

 with m  for 0.5n  , 0.01We  , 

1M  , 0.1  , 0.1Da  , 0.6  and 1Q   . It is 

noted that, the axial pressure gradient dp
dx

 decreases  

with increasing Hall parameter m .  

The variation of the axial pressure gradient 

dp
dx

 with M  for 0.5n  , 0.2m  , 0.01We  , 0.1  , 

0.1Da  , 0.6  and 1Q    is depicted in Fig. 7.  It 

is observed that, on increasing Hartmann number 

M  increases the axial pressure gradient dp
dx

.  

Fig. 8 shows the variation of the axial 

pressure gradient dp
dx

 with   for 0.5n  , 0.2m  , 

0.1  , 1M  , 0.01We  , 0.1Da   and 1Q   . It is 

found that, the axial pressure gradient dp
dx

 increases  

with increasing amplitude ratio  .  

The variation of the pressure rise p  with 

Q  for different values of We  with 0.5n  , 0.2m  , 

0.1  , 1M  , 0.1Da   and 0.6   is shown in Fig. 

9. It is noted that, the time-averaged volume flow 

rate Q  increases with increasing Wiessenberg 

number We  in pumping  0p  , free-pumping 

 0p   and co-pumping  0p   regions.   

Fig. 10 illustrates the variation of the 

pressure rise p  with Q  for different values of n  

with 0.01We  , 0.2m  , 0.1  , 0.1Da  , 1M   and 

0.6  . It is noted that, the time-averaged flow rate 

Q  decreases with increasing n  in both the 

pumping and free pumping regions, while it 

increases with increasing n  in the co-pumping 

region.    

The variation of the pressure rise p  with 

Q  for different values of   with 0.5n  , 0.01We  , 

0.2m  , 0.1Da  , 1M   and 0.6   is presented 

in Fig. 11. It is found that, the time-averaged flow 

rate Q  decreases with increasing   in both the 

pumping and the free pumping regions, while it 

increases with increasing   in the co-pumping 

region.    

Fig. 12 depicts the variation of the pressure 

rise p  with Q  for different values of Da  with 

0.5n  , 0.01We  , 0.1  , 0.2m  , 1M   and 

0.6   is presented in Fig. 11. It is found that, the 

time-averaged flow rate Q  decreases with 

increasing Da  in the pumping region, while it 

increases with increasing Da  in both the free 

pumping and the co-pumping regions.     

The variation of the pressure rise p  with 

Q  for different values of m  with 0.5n  , 0.01We  , 

0.1  , 0.1Da   , 1M   and 0.6   is illustrated in 
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Fig. 13. It is observed that, the time-averaged flow 

rate Q  decreases with increasing m  in the pumping 

region, while it increases with increasing m  in both 

the free pumping and co-pumping regions.    

Fig. 14 depicts the variation of the pressure 

rise p  with Q  for different values of M  with 

0.5n  , 0.1  , 0.2m  , 0.1Da  , 0.01We   and 

0.6  .  It is observed that, the time-averaged flow 

rate Q  increases with increasing M  in the 

pumping region, while it decreases with increasing 

M  in both the free-pumping and co-pumping 

regions.    

The variation of the pressure rise p  with 

Q  for different values of   with 0.5n  , 0.2m  , 

0.1  , 0.1Da  , 1M   and 0.01We   is depicted in 

Fig. 15. It is found that, the time-averaged flow 

rate Q  increases with increasing   in both the 

pumping and free pumping regions, while it 

decreases with increasing n  in the co-pumping 

region for chosen  0p  .    

V. CONCLUSIONS 

In this chapter, we studied the effects of 

slip and Hall on the peristaltic flow of a hyperbolic 

tangent fluid through a porous medium in a planar 

channel under the assumption of long wavelength. 

The expressions for the velocity and axial pressure 

gradient are obtained by employing perturbation 

technique. It is found that, the axial pressure 

gradient and time-averaged flow rate in the 

pumping region increases with increasing the 

Weissenberg number We , the Hartmann number 

M  and the amplitude ratio  , while they decreases  

with increasing power-law index n , slip parameter 

 , Darcy number Da  and Hall parameter m .  

 
Fig. 2 The variation of the axial pressure gradient 
dp
dx

 with We  for 0.5n  , 0.2m  , 0.1  , 

1M  , 0.1Da  , 0.6   and 1Q   .     
 

 
Fig. 3 The variation of the axial pressure gradient 
dp
dx

 with n  for 0.01We  , 0.2m  , 1M  , 0.1  ,  

0.1Da  , 0.6   and 1Q   .  
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Fig. 4 The variation of the axial pressure gradient 
dp
dx

 with   for 0.5n  , 0.01We  , 1M  , 0.2m  ,  

0.1Da  , 0.6   and 1Q   .     

 
Fig. 5 The variation of the axial pressure gradient 
dp
dx

 with Da  for 0.5n  , 0.01We  , 1M  , 0.2m  , 

0.1  ,  0.6   and 1Q   .     
 

 
Fig. 6 The variation of the axial pressure gradient 

dp
dx

 with m  for 0.5n  , 0.01We  , 1M  , 0.1  , 

0.1Da  , 0.6   and 1Q   .     
 

 
Fig. 7 The variation of the axial pressure gradient 
dp
dx

 with M  for 0.5n  , 0.2m  , 0.01We  , 0.1Da  , 

0.1  , 0.6   and 1Q   .     

  
Fig. 8 The variation of the axial pressure gradient 
dp
dx

 with   for 0.5n  , 0.2m  , 1M  , 0.1  , 

0.1Da  , 0.01We   and 1Q   .     
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Fig. 9 The variation of the pressure rise p  with Q  
for different values of We  with 0.5n  , 0.1  , 

0.2m  , 0.1Da  , 1M   and 0.6  .     
 

 
Fig. 10 The variation of the pressure rise p  with 
Q  for different values of n  with 0.01We  , 0.1  , 

0.2m  , 0.1Da  , 1M   and 0.6  .     

 
Fig. 11 The variation of the pressure rise p  with 

Q  for different values of   with 0.5n  , 0.2m  ,  
0.01We  , 0.1Da  , 1M   and 0.6  .     

 
Fig. 12 The variation of the pressure rise p  with 
Q  for different values of Da  with 0.5n  , 0.2m  ,  

0.01We  , 0.1  , 1M   and 0.6  .     

 
Fig. 13(i) The variation of the pressure rise p  
with Q  for different values of m  with 

0.5n  , 0.1  ,  0.01We  , 0.1Da  , 1M   and 
0.6  .     
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Fig. 13(ii) Enlargement of Fig. 13(i).  

 
Fig. 14 The variation of the pressure rise p  with 
Q  for different values of M  with 0.5n  , 0.1  , 

0.2m  , 0.1Da  , 0.01We   and 0.6  .     
 

 
Fig. 15 The variation of the pressure rise p  with 
Q  for different values of   with 0.5n  , 0.1  , 

0.2m  , 0.1Da  , 1M   and 0.01We  .     
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