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Slip And Hall Effects On The Flow Of A Hyperbolic Tangent Fluid Through Porous
Medium In A Planar Channel With Peristalsis

K. Shalini And K.Rajasekhar

Abstract— In this paper, the effect of Slip and Hall effects on
the flow of Hyperbolic tangent fluid through a porous
medium in a planar channel with peristalsis under the
assumption of long wavelength is investigated. A Closed
form solutions are obtained for axial velocity and pressure
gradient by employing perturbation technique. The effects of
various emerging parameters on the pressure gradient, time
averaged volume flow rate and frictional force are discussed
with the aid of graphs.
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I.  INTRODUCTION

Extensive study of peristalsis has been
carried out for a Newtonian with a periodic train of
sinusoidal peristaltic waves. The inertia — free
peristaltic transport with long wavelength analysis
was given by Shapiro et al. (1969). The early
developments on the mathematical modeling and
experimental fluid mechanics of peristaltic flow
were given in a comprehensive review by Jaffrin and
Shapiro (1971). However, the rheological properties
of the fluids can affect these characteristics
significantly. Moreover, most of the physiological
fluids are known to be non-Newtonian. It is well
known tha some fluids which are encountered in
chemical applications do not adhere to the classical
Newtonian  viscosity  prescription and are
accordingly known as non-Newtonian fluids. One
especial class of fluids which are of considerable
practical importance is that in which the viscosity

depends on the shear stress or on the flow rate. The
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viscosity of most non-Newtonian fluids, such as
polymers, is usually a nonlinear decreasing function
of the generalized shear rate. This is known as shear-
thinning behavior. Such fluid is a hyperbolic tangent
fluid (Ai and Vafai, 2005). Nadeem and Akram
(2009) have first investigated the peristaltic flow of
a hyperbolic tangent fluid in an asymmetric channel.
Nadeem and Akbar (2011) have analyzed the
peristaltic transport of a Tangent hyperbolic fluid in
an endoscope numerically. Akbar et al. (2012) have
discussed the peristaltic flow of a hyperbolic tangent
fluid in an inclined asymmetric channel with slip
and heat transfer.

Based on Experimental controls, it was
shown that the controlled application of low
intensity and frequency pulsing magnetic fields

modify
Biochemistry has taught us that cells are formed of

could cell and tissue behavior.
positive or negative charged molecules. This is
why these magnetic fields applied to living

organisms may induce deep modifications in
molecule orientation and in their interaction. An
impulse magnetic field in the combined therapy of
patients with stone fragments in the upper urinary
tract was experimentally studied by Li et al
(1994). It was found that impulse magnetic field
(IMF) activates impulse activity of ureteral smooth

muscles in 100% of cases. Elshahed and Haroun
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(2005) have investigated the peristaltic flow of a
Johnson-Segalman fluid in a planar channel under
the effect of a magnetic field. Hayat and Ali (2006)
have investigated the peristaltic motion of a MHD
third grade fluid in a tube. Hayat et al. (2007) have
first investigated the Hall effects on the peristaltic
flow of a Maxwell fluid trough a porous medium in
channel. M agnetohydrody namic peristaltic flow of
a hyperbolic tangent fluid in a vertical asy mmetric
channel with heat transfer was studied by Nadeem
and Akram (2011). Prasanth Reddy and Subba
Reddy (2012) have analyzed the peristaltic
pumping of third grade fluid in an asymmetric
channel under the effect of magnetic fluid. Effect
of hall and ion slip on peristaltic blood flow of
Eyring Powell fluid in a non-uniform porous
channel was studied by Bhatti et al. (2016). Subba
Narasimhudu and Subba Reddy (2017) have
studied the Hall effects on the peristaltic flow of a
Hyperbolic tangent fluid in a channel. Shalini and
Rajasekhar (2019) have investigated the effect of
hall on peristaltic flow of a Newtonian fluid
through a porous medium in a two-dimensional
channel.

Moreover, flow through a porous medium
has been studied by a number of researchers
employing Darcy’s law Scheidegger (1974). Some
studies about this point have been given by
Varshney (1979) and Raptis and Perdikis (1983).
The first study of peristaltic flow through a porous
medium is presented by Elsehawey et al. (1999).
Elsehawey et al. (2000) investigated the peristaltic
motion of a generalized Newtonian fluid through a
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porous medium. Hayat et al. (2007) have first
investigated the Hall effects on the peristaltic flow
of a Maxwell fluid trough a porous medium in
channel. Peristaltic motion of a carreau fluid
through a porous medium in a channel under the
effect of a magnetic field was studied by Sudhakar
Reddy et al. (2009). Subba Reddy and Prasnath
Reddy (2010) have investigated the effect of
variable viscosity on peristaltic flow of a Jeffrey
fluid through a porous medium in a planar channel.
Eldabe (2015) have studied the Hall Effect on
peristaltic flow of third order fluid in a porous
medium with heat and mass transfer.

Motivated by these, the effect of slip and
Hall on the peristaltic pumping of a hyperbolic
tangent fluid in a planar channel under the
assumption of long wavelength is investigated. The
expressions for the velocity and axial pressure
gradient are obtained by employing perturbation
technique. The effects of Weissenberg number,
power-law index, Darcy number, Hall parameter,
Hartmann number and amplitude ratio on the axial
pressure gradient, time-averaged volume flow rate
and the friction force at the wall are analyzed with

the help of graphs.
Il. MATHEMATICAL FORMULATION

We consider the peristaltic motion of a hyperbolic
tangent fluid through a porous medium in a two-
dimensional channel of width 2a under the effect
of magnetic field. The flow is generated by
sinusoidal wave trains propagating with constant
speed c along the channel walls. A uniform

magnetic field B, is applied in the transverse
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direction to the flow. The magnetic Reynolds

number is considered small and so induces
magnetic field neglected. Fig. 1 represents the
physical model of the channel.

The wall deformation is given by

Y =J_rH(X,t)=J_raJ_rbcosz/l—ﬂ(X—ct), (2.1)

where b is the amplitude of the wave, 1 - the wave
length and X and Y - the rectangular co-ordinates
with X measured along the axis of the channel and
Y perpendicular to X . Let U,v) be the velocity
components in fixed frame of reference (x,Y).

The flow is unsteady in the laboratory
frame (X,Y) . However, in a co-ordinate system
moving with the propagation velocity ¢ (wave
frame (X, y)), the boundary shape is stationary. The
transformation from fixed frame to wave frame is
given by

x=X-ct,y=Y,u=U-cyv=V (2.2)
where (u,v) and U,V) are velocity components in

the wave and laboratory frames respectively.

H(X.1)

Porous medium

<
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The constitutive equation for a Hyperbolic

Tangent fluid is

v ==[n, +(n, +n,)tanh(T7)" |7 (2.3)
where ¢ is the extra stress tensor, n_ is the infinite
shear rate viscosity, n, is the zero shear rate

viscosity, T is the time constant, n is the power-

law indexand y is defined as

= Ezzw =\/§_zr

where = is the second invariant stress tensor. We

(2.4)

consider in the constitutive equation (2.3) the case
for which n,_ =0 and 1y <1, so the Eq. (2.3) can be

written as

t=-n,(I7)" 7 =-m,(1+Ty =1)" y = —n, (1+n[Ty-1])y
(2.5)
The above model reduces to Newtonian for
r=0and n=0.
The equations governing the flow in the

wave frame of reference are

AN (2.6)
ox oy

ou ou)_ op or, Or,  oB; ~
p(uaxwayj X ox oy 1+m2(mv (u+))
—%(u+c)

2
p WA __%p 0y 0Oty o8 (m(u+c)+v)
ox oy oy ox oy 1l+m?
Mo
Y

(2.8)
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where p is the density, k is the permeability of the

porous medium, o is the electrical conductivity,
B, IS the magnetic field strength and m is the Hall
parameter.

The corresponding dimensional boundary
conditions are
u+pr, =— at y=H (slip condition) (2.9

a

Y =0 at y=0 (symmetry condition) (2.10)

here g is the slip parameter.

Introducing the non-dimensional variables defined

g=2 y=X g=4 v-XL, 6 5-2
a c co A
- pa b
p_noci ~a
H - o - A - a - A
h=—, t=— tu=—1,, T, =—7T,, Ty="—"T,
a 1,C 1,C 1,C
Re=£% e=E, 7= g=2 (2.11)
7, a c ac

into the Equations (2.6) - (2.8), reduce to (after
dropping the bars)

aov

- 2.12
6x+8y 0 ( )

i (2.13)
T (mév —(u+1))——(u+1)
Re53(u@+vﬂj _ 0 5207y (0T,

. ox oy 8;/2 oy oy (2_1 4)
m mz(m(u +1)+5v)—D—av

where Da=— is the Darcy number,
a
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7, =—2[1+n(Wey -1) g—“
X

7, =—[1+n(Wey -1)] [g—‘;+ 52 %}

7, =-25[1+n(Wey 1) g—;

1
2 2 272
y = 252(8—“j NI A Bl and
OX oy OX oy
M :aBOJE is the Hartmann number.
Ty

Under lubrication approach, neglecting the

terms of order 5 and Re, the Egs. (2.13) and (2.14)
become

, (2.15)
[ M - +ij(u+l)
1+m* Da
D _
Py 0 (2.16)
From Eq. (2.15) and (2.16), we get
%:(1—n)ig+nWei (a_uj -
dx % Y\ 2.17)
M 2 1
( > +—](u+1)
1+m® Da

The corresponding non-dimensional
boundary conditions in the wave frame are given
by

u+ﬂ{1+n[Wea—u—lﬂa—u =-1 at
oy 2%

y=h=1+¢cos2rx (2.18)
a = =
o 0 at y=0 (2.19)

The volume flow rate g in a wave frame of

reference is given by
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h
a=fudy. (2.20)
The instantaneous flow Q(X,t) in the
laboratory frame is
h h
Q(X,t):.[UdY :j(u+1)dy =g+h (2.21)

The time averaged volume flow rate Q

over one period T(: ij of the peristaltic wave is
c
given by

—_ 1T
Q=;£th=q+1 (2.22)

I11. SOLUTION

Since Eq. (2.17) is a non-linear differential
equation, it is not possible to obtain closed form
solution. Therefore we employ regular perturbation

to find the solution.

For perturbation solution, we expand u,‘;—p and gas
X

follows
u=u, +Weu, +0 (We?) (3.1)
%=%+We%+o(We2) (3.2)
dx  dx dx
q=q,+Weq, +O(We?) (3.3)

Substituting these equations into the Egs. (2.17) -
(2.19), we obtain

3.1. System of order we®

(L;Pxo: (1—n)%—[%+éj(uo +1) (3.4)

and the respective boundary conditions are

u0+ﬂ(l—n)%=—l at y=nh (3.5)
oy

% =0 at y=0 (3.6)
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3.2. System of order we'

%:(1_n)62—%+il:[%] ]—( M22+iju1 (37)
dx oy. oy|\ oy 1+m® Da

and the respective boundary conditions are

u+ (1 n)ay +ﬁn(ayj 0 at y=h (3.8)
g at y=0 (3.9)
oy

3.3 Solution for system of order we®
Solving Eq. (3.4) using the boundary
conditions (3.5) and (3.6), we obtain

_ 1 dp, coshay 111
* a?(1-n) dx | coshah+apd-n)sinhah

1 (M2 1
where o = [— =+—| .
1-n{1+m* Da

The volume flow rate q, is given by

u

(3.10)

¢ - 1 dpo{sinhah—ah(coshah+aﬁ(l—n)sinhah)
L= 2o

a’(1-n) dx coshah+aB(@—n)sinhah
(3.11)

From Eq. (3.11), we have

(@ +h)a®(1-n)(coshah + afL-n)sinhah)

dp,
d<  [sinhah—ah(coshah+aB(L-n)sinhah)]

(3.12)

3.4 Solution for system of order we'

Substituting Eq. (3.10) in the Eq. (3.7) and
the Eqg. (3.7), using the boundary

conditions (3.8) and (3.9), we obtain

solving

1 dp, coshay
W= (1- n)a (cosh ah+ af (1-n)sinhah) -

(dpo Jz
n{ dx

(3.13)

Where ¢ =[« (1-n)(coshah +aB(1- n)sinh ozh)]3
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{(sinh 2ah—2sinhah) coshay +}
(2sinh oy —sinh2ay )cosh ech
2(cosh2ah —coshah) coshary
+af (1-n)| —sinh?ahcoshay
+sinhah(2sinhay-sinh2ay)

The volume flow rate q, is given by

q1:

a®(1-n) dx (coshach+ap(@—n)sinhah)

(3.14)

(4—3cosh ah+ 2sinh 2ahsinhah—] .
cosh2ahcosh ah

G

6a"(1-n)’(coshah +aB@L-n)sinhah)’

wherec, =n

3sinh ah (cosh 2ch —1)
—2sinh®ah '

c,=apf (1—n)[

From Eq. (3.14) and (3.12), we have

dp, q1N3(1—n)(coshah+a,8(1—n)sinhah) . (dp°j2
dx  [sinhoch—ah(coshah+ap(d-n)sinhah)] ™\ dx
(3.15)
where
4-3cosh ah+ 2sinh2ahsinh ah —
. - cosh2ah cosh ah +c¢,
, =

6or(1—- n)2 (coshah+af(1-n)sinh ozh)Z
(sinhah—ah(coshach +aB(1-n)sinhah))

Substituting Equations (3.12) and (3.15)

into the Eg. (3.2) and using the
relation %=@—We% and neglecting terms
dx dx dx

greater thanO (We), we get

Page |388

1 dp {sinh ah - ah(coshah +aB@-n)sinh ah)}
— +

ISSN: 1430-3663
Vol-15-1ssue-1-January -2020

dp _(a+h)a’(1-n)(coshah +aB(l—n)sinhah)
dx  [sinhah-ah(coshah+aB(l-n)sinhah)]

Wec, (q+h)’c
(3.16)

2

3(1-n coshah+
“ )(a/)’(l— n)sinhahj

inh ah— oh coshah+
SN =ah 50 —n)sinhah

The dimensionless pressure rise per one

Where c, =

wavelength in the wave frame is defined as

(3.17)

Note that, as Da -« and g — 0 our results
coincide with the results of Subba Narasimhudu
and Subba reddy (2017).

IV. DISCUSSIONS OF THE RESULTS

Fig. 2 shows the variation of the axial

pressure gradient % with we for n=0.5, m=0.2,
X

B=01,M=1, Da=01, ¢=06 and Q=-1. It is
dp

observed that, the axial pressure gradient

increases with increasing Wiessenberg number We .

The variation of the axial pressure gradient

dp

with n for we=001, m=02, M=1, g=0.1,
Da=01, ¢=0.6 and Q=-1 is depicted in Fig. 3. It
dp

is found that, the axial pressure gradient

decreases with an increase in power-law index n.

Fig. 4 illustrates the variation of the axial

pressure gradient % with g for n=0.5, We=001,
X
M=1, m=0.2, Da=01, ¢=06and Q=-1. It is
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noted that, the axial pressure gradient % decreases

with increasing slip parameter .

The variation of the axial pressure gradient

% with Da for n=0.5, We=001, M=1, =0.1,
X

m=0.2, ¢=0.6and Q=-1 shown in Fig. 5. It is
noted that, the axial pressure gradient % decreases

with increasing Darcy number Da .

Fig. 6 depicts the variation of the axial

pressure gradient % with m for n=0.5, We=0.01,
X

M=1, =01, Da=01, ¢=06and Q=-1. It i
noted that, the axial pressure gradient % decreases
X

with increasing Hall parameter m.
The variation of the axial pressure gradient

% with M for n=0.5, m=0.2, We=001, 8=0.1,
Da=01, ¢ =0.6and Q=-1 is depicted in Fig. 7. It
is observed that, on increasing Hartmann number
M increases the axial pressure gradient %.

Fig. 8 shows the variation of the axial

pressure gradient % with ¢ for n=05, m=0.2,
X

B=0.1, M=1, We=001, Da=01 and Q=-1. It is
found that, the axial pressure gradient % increases
X

with increasing amplitude ratio ¢.

The variation of the pressure rise Ap with
Q for different values of we with n=0.5, m=0.2,
B=0.1, M=1, Da=0.1 and ¢ =0.6 is shown in Fig.
9. It is noted that, the time-averaged volume flow
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rate Q increases with increasing Wiessenberg
number We in pumping (Ap>0), free-pumping
(Ap =0) and co-pumping (Ap<0) regions.

Fig. 10 illustrates the variation of the
pressure rise Ap with Q for different values of n
with We =001, m=0.2, =0.1, Da=0.1, M =1 and
¢ =0.6. It is noted that, the time-averaged flow rate

Q decreases with increasing n in both the
pumping and free pumping regions, while it
increases with increasing n in the co-pumping
region.

The variation of the pressure rise Ap with
Q for different values of g with n=0.5, We =001,
m=0.2, ba=01, M=1 and ¢=0.6 is presented
in Fig. 11. It is found that, the time-averaged flow
rate Q decreases with increasing g in both the
pumping and the free pumping regions, while it
increases with increasing g in the co-pumping
region.

Fig. 12 depicts the variation of the pressure
rise Ap with Q for different values of Da with
n=05, We=001, M=1 and

B=01, m=02,

¢ =0.6 IS presented in Fig. 11. It is found that, the
time-averaged flow rate Q decreases with
increasing Da in the pumping region, while it
increases with increasing Da in both the free
pumping and the co-pumping regions.

The variation of the pressure rise Ap with
Q for different values of m with n=0.5, We =001,

B=0.1, Da=01, M =1 and ¢ =0.6 is illustrated in
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Fig. 13. It is observed that, the time-averaged flow  with increasing power-law index n, slip parameter

rate Q decreases with increasing m in the pumping
region, while it increases with increasing m in both
the free pumping and co-pumping regions.

Fig. 14 depicts the variation of the pressure
rise Ap with Q for different values of M with
n=05, f=01, m=02, Da=01, We=001 and
¢ =0.6. It is observed that, the time-averaged flow

rate Q increases with increasing M in the
pumping region, while it decreases with increasing
M in both the free-pumping and co-pumping
regions.

The variation of the pressure rise Ap with
Q for different values of ¢ with n=0.5, m=0.2,
p=01, Da=01,M =1 and We=0.01 is depicted in
Fig. 15. It is found that, the time-averaged flow
rate Q increases with increasing ¢ in both the
pumping and free pumping regions, while it
decreases with increasing n in the co-pumping
region for chosen Ap(<0).

V. CONCLUSIONS

In this chapter, we studied the effects of
slip and Hall on the peristaltic flow of a hyperbolic
tangent fluid through a porous medium in a planar
channel under the assumption of long wavelength.
The expressions for the velocity and axial pressure
gradient are obtained by employing perturbation
technique. It is found that, the axial pressure
gradient and time-averaged flow rate in the
pumping region increases with increasing the
Weissenberg number We , the Hartmann number

M and the amplitude ratio ¢, while they decreases
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B, Darcy number Da and Hall parameter m.
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Fig. 2 The variation of the axial pressure gradient

dp with we for

dx
M=1,Da=01, ¢=0.6 and Q=-1.

n=05, m=02 , p=01,

90

80

60

dp

dx gl

20

0

0 0.2 04 0.6 08 1
X

Fig. 3 The variation of the axial pressure gradient

% with n for we=001, m=02, M=1,3=0.1,
X

Da=01, ¢=0.6 and Q=-1.
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Fig. 4 The variation of the axial pressure gradient
% with g for n=0.5, We=001, M=1, m=0.2,
X

Da=01, ¢=0.6 and Q=-1.
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300f
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dx Da=0.01.0.1.10,100

2001

100

e

"o 02 0.4 0.6 0.8 1
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Fig. 5 The variation of the axial pressure gradient

% with Da for n=05, We=001,M=1 m=0.2,
X

B=0.1, ¢=0.6 and Q=-1.

90 T T T

X

Fig. 6 The variation of the axial pressure gradient
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% with m for n=05, We=001, M=1, g=0.1,
X

Da=01, ¢=0.6 and Q=-1.

90

dp

dx

X

Fig. 7 The variation of the axial pressure gradient

% with M for n=0.5, m=0.2, We=001, Da=0.1,
X

=01, =06 and Q=-1.
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Fig. 8 The variation of the axial pressure gradient
% with ¢ for n=05, m=02, M=1, =01,
X

Da=0.1, We=001 and Q=-1.
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10 : : : . Q for different values of g with n=0.5,m=0.2,
We=001, Da=01, M=1 and ¢ =0.6.

We=0.02.0.0L0

5 4
>\ 40 : :
Ap o 20k Da=0.01,0.1.10,100
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155 0z 0 05 08 1
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Fig. 9 The variation of the pressure rise Ap with Q -100F
for different values of we with n=05, g=0.1, 120} . T — !
m=0.2, Da=01, M=1 and ¢=0.6. 0
Fig. 12 The variation of the pressure rise Ap with
10 : . ; : Q for different values of Da with n=0.5,m=0.2,

We=001, #=0.1, M=1 and ¢ =0.6.
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20 0z 0 06 08 1
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Fig. 10 The variation of the pressure rise Ap with
Q for different values of n with we=001, g=0.1, " . . . .
0 0.2 04 0.6 08 1
m=0.2, Da=01, M=1 and ¢ =0.6. -
10 - ; ; ‘ Fig. 13(i) The variation of the pressure rise Ap

with Q for different values of m with
n=0.5,8=0.1, We=001, Da=0.1, M =1 and
¢ =06.

.20 L ! L I
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Fig. 11 The variation of the pressure rise Ap with
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Fig. 13(ii) Enlargement o{“ Fig. 13(i).
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Fig. 14 The variation of the pressure rise Ap with
Q for different values of M with n=0.5, g=0.1,
m=0.2, Da=0.1, We=0.01 and ¢ =0.6.
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Fig. 15 The variation of the pressure rise Ap with
Q for different values of ¢ with n=0.5, g=0.1,
m=0.2, Da=01, M =1 and We=0.01.
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